Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 35(2): e21338, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33428278

RESUMO

Pregnancy complications associated with prenatal hypoxia lead to increased placental oxidative stress. Previous studies suggest that prenatal hypoxia can reduce mitochondrial respiratory capacity and mitochondrial fusion, which could lead to placental dysfunction and impaired fetal development. We developed a placenta-targeted treatment strategy using a mitochondrial antioxidant, MitoQ, encapsulated into nanoparticles (nMitoQ) to reduce placental oxidative stress and (indirectly) improve fetal outcomes. We hypothesized that, in a rat model of prenatal hypoxia, nMitoQ improves placental mitochondrial function and promotes mitochondrial fusion in both male and female placentae. Pregnant rats were treated with saline or nMitoQ on gestational day (GD) 15 and exposed to normoxia (21% O2 ) or hypoxia (11% O2 ) from GD15-21. On GD21, male and female placental labyrinth zones were collected for mitochondrial respirometry assessments, mitochondrial content, and markers of mitochondrial biogenesis, fusion and fission. Prenatal hypoxia reduced complex IV activity and fusion in male placentae, while nMitoQ improved complex IV activity in hypoxic male placentae. In female placentae, prenatal hypoxia decreased respiration through the S-pathway (complex II) and increased N-pathway (complex I) respiration, while nMitoQ increased fusion in hypoxic female placentae. No changes in mitochondrial content, biogenesis or fission were found. In conclusion, nMitoQ improved placental mitochondrial function in male and female placentae from fetuses exposed to prenatal hypoxia, which may contribute to improved placental function. However, the mechanisms (ie, changes in mitochondrial respiratory capacity and mitochondrial fusion) were distinct between the sexes. Treatment strategies targeted against placental oxidative stress could improve placental mitochondrial function in complicated pregnancies.


Assuntos
Antioxidantes/uso terapêutico , Hipóxia Fetal/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Nanopartículas/química , Compostos Organofosforados/uso terapêutico , Placenta/efeitos dos fármacos , Ubiquinona/análogos & derivados , Animais , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Respiração Celular , Feminino , Masculino , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Compostos Organofosforados/administração & dosagem , Compostos Organofosforados/farmacologia , Placenta/metabolismo , Gravidez , Ratos , Ratos Sprague-Dawley , Fatores Sexuais , Ubiquinona/administração & dosagem , Ubiquinona/farmacologia , Ubiquinona/uso terapêutico
2.
Exp Physiol ; 105(9): 1507-1514, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32749725

RESUMO

NEW FINDINGS: What is the central question of this study? Does treatment of hypoxic dams with a placenta-targeted antioxidant prevent the release of placenta-derived factors that impair maturation or growth of fetal cardiomyocytes in vitro? What is the main finding and its importance? Factors released from hypoxic placentae impaired fetal cardiomyocyte maturation (induced terminal differentiation) and growth (increased cell size) in vitro, which was prevented by maternal treatment with a placenta-targeted antioxidant (nMitoQ). Moreover, there were no sex differences in the effects of placental factors on fetal cardiomyocyte maturation and growth. Overall, our data suggest that treatment targeted against placental oxidative stress could prevent fetal programming of cardiac diseases via the release of placental factors. ABSTRACT: Pregnancy complications associated with placental oxidative stress may impair fetal organ development through the release of placenta-derived factors into the fetal circulation. We assessed the effect of factors secreted from placentae previously exposed to prenatal hypoxia on fetal cardiomyocyte development and developed a treatment strategy that targets placental oxidative stress by encapsulating the antioxidant MitoQ into nanoparticles (nMitoQ). We used a rat model of prenatal hypoxia (gestational day (GD) 15-21), which was treated with saline or nMitoQ on GD15. On GD21, placentae were harvested, placed in culture, and conditioned medium (containing placenta-derived factors) was collected after 24 h. This conditioned medium was then added to cultured cardiomyocytes from control dam fetuses. Conditioned medium from prenatally hypoxic placentae increased the percentage of binucleated cardiomyocytes (marker of terminal differentiation) and the size of mononucleated and binucleated cardiomyocytes (sign of hypertrophy), effects that were prevented by nMitoQ treatment. Our data suggest that factors derived from placentae previously exposed to prenatal hypoxia lead to abnormal fetal cardiomyocyte development, and show that treatment against placental oxidative stress may prevent fetal programming of cardiac disease.


Assuntos
Antioxidantes/farmacologia , Desenvolvimento Fetal/efeitos dos fármacos , Hipóxia/tratamento farmacológico , Miócitos Cardíacos/fisiologia , Placenta/fisiologia , Animais , Células Cultivadas , Meios de Cultivo Condicionados , Feminino , Masculino , Compostos Organofosforados/farmacologia , Estresse Oxidativo , Gravidez , Ratos , Ratos Sprague-Dawley , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia
3.
Front Physiol ; 10: 562, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31178743

RESUMO

Pregnancy complications associated with chronic fetal hypoxia have been linked to the development of adult cardiovascular disease in the offspring. Prenatal hypoxia has been shown to increase placental oxidative stress and impair placental function in a sex-specific manner, thereby affecting fetal development. As oxidative stress is central to placental dysfunction, we developed a placenta-targeted treatment strategy using the antioxidant MitoQ encapsulated into nanoparticles (nMitoQ) to reduce placental oxidative/nitrosative stress and improve placental function without direct drug exposure to the fetus in order to avoid off-target effects during development. We hypothesized that, in a rat model of prenatal hypoxia, nMitoQ prevents hypoxia-induced placental oxidative/nitrosative stress, promotes angiogenesis, improves placental morphology, and ultimately improves fetal oxygenation. Additionally, we assessed whether there were sex differences in the effectiveness of nMitoQ treatment. Pregnant rats were intravenously injected with saline or nMitoQ (100 µl of 125 µM) on gestational day (GD) 15 and exposed to either normoxia (21% O2) or hypoxia (11% O2) from GD15 to 21. On GD21, placentae from both sexes were collected for detection of superoxide, nitrotyrosine, nitric oxide, CD31 (endothelial cell marker), and fetal blood spaces, Vegfa and Igf2 mRNA expression in the placental labyrinth zone. Prenatal hypoxia decreased male fetal weight, which was not changed by nMitoQ treatment; however, placental efficiency (fetal/placental weight ratio) decreased by hypoxia and was increased by nMitoQ in both males and females. nMitoQ treatment reduced the prenatal hypoxia-induced increase in placental superoxide levels in both male and female placentae but improved oxygenation in only female placentae. Nitrotyrosine levels were increased in hypoxic female placentae and were reduced by nMitoQ. Prenatal hypoxia reduced placental Vegfa and Igf2 expression in both sexes, while nMitoQ increased Vegfa and Igf2 expression only in hypoxic female placentae. In summary, our study suggests that nMitoQ treatment could be pursued as a potential preventative strategy against placental oxidative stress and programming of adult cardiovascular disease in offspring exposed to hypoxia in utero. However, sex differences need to be taken into account when developing therapeutic strategies to improve fetal development in complicated pregnancies, as nMitoQ treatment was more effective in placentae from females than males.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...